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a-Selective glycosylation is a highly challenging and meaningful objective in carbohy-

drate chemistry.[1a-c] This is mainly because many biologically active oligosaccharides

and other glycoconjugates in nature carry an a-glycoside linkage at the non-reducing

terminal such as a-L-fucoside in sialyl LewisX antigens[2] and a-D-galactobioside in PK

antigens.[3a,b] However, a-glycosylation is not straightforward and requires optimization

of the glycosyl donors, promoters, solvents, and other reaction conditions. In this respect,

a halide ion-catalyzed a-glycosylation method proposed by Lemieux et al.[4] in 1975 has

provided one of the few definitive ways. a-Selectivity is nearly perfect for many acceptor

sugars so far examined as long as 2-O-benzyl glycosyl bromides are employed as

donors.[5a – d] Moreover, the method requires no heavy metal promoters or strong Lewis

acid catalysts. These properties are of high significance for large-scale production of

‘‘sugar-based’’ therapeutic agents and biochemical materials.

In our study on the structure and immunogenic activity of a-D-glucopyranosyl-sn-

glycerophospholipids (GGPLs) isolated from Mycoplasma fermentans,[6a,b] we applied
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the Lemieux method to stereoselective syntheses of GGPL-I and GGPL-III to elucidate

their absolute structures.[7a,b] During this study, however, we experienced much trouble

at the stage of preparing the 2-O-benzyl glycosyl bromides. In particular, the use of

hydrogen bromide (HBr) from a steel tank requires special attention regarding noxious

fumes. Such experiences prompted us to eliminate the difficulty prior to employing the

excellent a-glycosylation methodology. In this paper, we describe a convenient access

to 6-O-acetyl-2,3,4-tri-O-benzyl-a-D-glucopyranosyl bromide leading to a one-pot a-gly-

cosylation reaction. The pathway allows us to perform a highly practical a-glycosylation

without suffering from the noxious fumes.

2-O-Benzyl glycosyl bromides 2 are highly labile and intolerant to purification on

silica gel columns and other purification processes. Therefore, 1-O-p-nitrobenzoyl su-

gars 1a[8] and 1-thio glycosides[9] have been popularly employed as donor precursors

(Scheme 1-a). Upon treatment of 1a with HBr gas in CH2Cl2, the glycosylbromide 2 is

produced and p-nitrobenzoic acid crystallizes from the solution. Though 1-thio gly-

Scheme 2. Convenient synthesis of the bromide donor 6 and its application for one pot

a-glycosylation.

Scheme 1. Preparation of 2-O-benzyl glycosyl bromides 2. (a) Conventional bromination using

noxious fumes of HBr. (b) Our proposal for bromination using Ph3P/CBr4.
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cosides are convertible to glycosyl bromides without using HBr gas, this approach

seems to cause an analogous problem of malodorous thiols.[10] In the present study, we

expected that anomeric free (1-OH) sugars 1b might lead to the halide ion-catalytic

a-glycosylation effectively by the use of an appropriate brominating agent. Among

several candidates as brominating agents,[11,12a,b – 14] we investigated triphenylpho-

sphine/ carbon tetrabromide[14] as a reagent for replacing the 1-OH group with 1-Br

(Scheme 1-b).

In order to examine the 1-bromination reaction, 6-O-acetyl–2,3,4-tri-O-benzyl-D-

glucopyranose 5 was prepared from methyl tetra-O-benzyl-D-glucopyranoside 3 avail-

able from D-glucose in our reported way (72% yield for two steps).[15] Regioselective

acetolysis of 3 cleaved the 1-O-Me and 6-O-Bn groups and afforded 4, which was

subjected to aminolysis by piperidine in THF to then give the 1-OH sugar 5 (Scheme 2).

The bromination reaction of 5 with PhP3 and CBr4 was optimized at room temperature

(15–20�C) by changing the solvents (CH2Cl2, toluene, THF, and diethyl ether) and the

molar ratio of the bromination agents (1.0� 3.0 mol equiv). The reaction was mo-

nitored by TLC on silica gel (n-hexane/ethyl acetate) to show that the 1-OH sugar 5
was consumed completely within 3 h and converted to glycosyl bromide 6 when CBr4

Scheme 3. Application of 6 for one pot a-glycosylation to 3-O-a-D-glycosyl-sn-glycerides.
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(3 mol equiv) and Ph3P (3 mol equiv) were used in CH2Cl2.a Addition of diethyl ether

caused precipitation of Ph3P O. Filtration followed by the evaporation of the solvent

gave 6-O-acetyl-2,3,4-tri-O-benzyl-a-D-glucosyl bromide 6 as a syrup.[16]

One-pot glycosylation was next examined for the reaction mixture without any

isolation processes for the bromide donor 6 and Ph3P O. Commercially available (S)-

glycidol 7 and 1,2-O-isopropylidene-sn-glycerol 10 were employed as glycosyl ac-

ceptors, taking their synthetic potential for GGPLs and other a-D-glycosyl-sn-glycerides

into account (Scheme 3).[7,17,18] When the glycosylation was conducted at room tem-

perature in the presence of tetraethylammonium bromide[4,5] (Et4NBr, 1.5 mol equiv)

and N,N,N’,N’-tetramethylurea (TMU, 10 mol equiv),[7] each of the glycosylated pro-

ducts 8 and 11 was isolated in satisfactory yieldsb (82% and 95%, respectively, based

on the amount of 1-OH sugar 5) after purification on silica gel column. Their 1H NMR

spectrac showed that both of the acceptors 7 and 10 permitted a-selective glycosylation

affording no b-isomer. These results have shown that none of the brominating agents

and possible side-products, including Ph3P O, affect the one-pot a-glycosylation

under the halide ion-catalytic conditions. On the other hand, the reaction of 10 was

found to cause epimerization at the glycerol moiety to give a mixture of two di-

astereomers 11a and 11b in ca. 3:2 ratio. Analogous isomerization was reported in

glycosylation reactions using heavy metal promoters and regulated by the addition of

an appropriate amine base.[17,18] In the present case, the epimerization is considered to

proceed via the formation of an oxonium cation complex stabilized under the halide

ion-catalytic conditions (Scheme 3-b). The addition of excess TMU could not avoid the

cSelected analytical date of compound 8: 1H NMR (500 MHz, CDCl3) dH7.40� 7.23 (m, 5 H� 3,

–CH2C6H5), 4.55� 5.02 (dd, 2 H� 3, –CH2C6H5), 4.87 (d, 1 H, J = 4.0 Hz, H-1), 4.26 (dd, 1 H,

J = 4.0 and 12.0 Hz, H-6S), 4.22 (dd, 1 H, J = 2.5 and 12.0 Hz, H-6R), 4.02 (t, 1 H, J = 9.0 and 9.5

Hz, H-3), 3.88 (m, 1 H, H-5), 3.76 (dd, 1 H, J = 3.5 and 12.0 Hz, glycidol H-3proR), 3.48 (dd, 1 H,

J = 6.0 and 12.0 Hz, glycidol H-3proS), 3.53 (dd, 1 H J = 3.5 and 9.5 Hz, H-2), 3.20 (m, 1 H,

glycidol H-2), 2.57 and 2.78 (dd, 1 H� 2, J = 4.0 and J = 5.0, J = 3.0 and 5.0 Hz, glycidol H-1proR

or H-1proS), 1.99 (s, 3 H, –Ac); HR MS (FAB): m/z calcd for C32H36O8Na [M + Na + ] 571.2308;

found 571.2285. Compound 11a (major product): 1H NMR (500 MHz, CDCl3) dH 7.40� 7.23 (m,

5 H� 3, –CH2C6H5), 4.56� l4.99 (dd, 2 H� 3, –CH2C6H5), 4.83 (d, 1 H, J = 3.5 Hz, H-1), 4.35

(t, 1 H, J = 5.5 and 6.5 Hz, glycerol H-2), 4.20� 4.28 (dd, 1 H� 2 H-6), 3.98 (t, 1 H, J = 9.0 and

9.5 Hz, H-3), 3.85 (m, 1 H, H-5), 4.07 and 3.74 (dd, 1 H� 2, J = 8.5 and 6.5, J = 6.0 and 8.0 Hz,

glycerol H-3proR or H-3proS), 3.60 and 3.55 (dd, 2 H, J = 6.0 and 10.5, J = 6.5 and 10.5 Hz, glycerol

H-1proR or H-1proS), 3.54 (dd, 1 H, J = 3.5 and 9.5 Hz, H-2), 3.47 (dd, 1 H, J = 9.0 and 10.0 Hz, H-4),

2.02 (s, 3 H, –Ac), 1.42 and 1.36 (s, 3 H� 2, isopropyl). Compound 11b (minor product): 1H NMR

(500 MHz, CDCl3): dH7.40� 7.23 (m, 15 H, –CH2C6H5), 4.56� 4.99 (dd, 2 H� 3, –CH2C6H5),

4.74 (d, 1 H, J = 3.5 Hz, H-1), 4.32 (t, 1 H, J = 5.5 and 6.5 Hz, glycerol H-2), 4.20� 4.28 (dd, 1

H� 2, H-6), 4.00 (t, 1 H, J = 9.0 and 9.5 Hz, H-3), 3.88 (m, 1 H, H-5), 4.07 and 3.78 (dd, 1 H� 2,

J = 6.5 and 8.5, J = 5.5 and J = 8.0 Hz, glycerol H-3proR or H-3proS), 3.69 and 3.42 (dd, 1 H� 2,

J = 6.0 and 10.5, J = 6.5 and 10.5 Hz, glycerol H-1proR or H-1proS), 3.54 (dd, 1 H, J = 3.5 and 9.5 Hz,

H-2), 3.48 (dd, 1 H, J = 9.0 and 10.0 Hz, H-4), 2.02 (s, 3 H, –Ac), 1.41 and 1.35 (s, 3 H� 2,

isopropyl); HR MS (FAB): m/z calcd for C35H42O9Na [M + Na + ] 629.2727; found 629.2704.

bIn these reactions, glycosyl bromide 6 was consumed completely for a-glycosylation without any

decomposition into 5. The low yield of 8 was ascribed to partial ring opening of the epoxide moiety

by a bromide anion during the reaction.

aThe 1-bromination reaction at room temperature was sluggish in toluene and not detected in THF

and diethyl ether in 2 h.
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epimerization. In any case, the use of (S)-glycidol 7 provides a more practical way

towards 3-O-a-D-glycosyl-sn-glycerides, since a fatty acid can be introduced in an SN2

fashion affording 9 regioselectively (Scheme 3-a).[7]

In conclusion, we have demonstrated a convenient access to 2-O-benzyl glucosyl

bromide 6 starting from D-glucose leading to one-pot halide ion-catalyzed a-gly-

cosylation. This approach has solved the difficulty in the chemical construction of a-D-

glucopyranosyl-sn-glycerides widely distributed in bacterial cell walls. We expect that

the present pathway will be extended to other glycosyl donors and acceptors to solve

many of difficulties encountered in a-glycosylation chemistry. Additional studies are in

progress in our group and will be reported elsewhere.
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